Defining Fractions

Directions: For each fraction, fill in the blanks for the definition mark the letter on the number line below each problem.

and

A.
$$\frac{1}{5}$$

Definition: Start with one whole and divide it into equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{1}{5}$.

B.
$$\frac{1}{7}$$

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{1}{7}$.

C.
$$\frac{1}{4}$$

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{1}{4}$.

D. $\frac{1}{2}$ (Mark this one on the SAME number line you used above for C)

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{1}{2}$.

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{3}{5}$.

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{2}{3}$.

G. $\frac{7}{5}$

WARNING: This problem has a big idea and extends your understanding!

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{7}{5}$.

This fraction also has another name. It is called $1\frac{2}{5}$, which is read "one and two fifths."

H. $\frac{4}{7}$

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{4}{7}$

I. $\frac{5}{3}$

WARNING: This problem has a big idea and extends your understanding!

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about ____ of those ____ pieces when we name the fraction $\frac{5}{3}$

This fraction also has another name. It is called $1\frac{2}{3}$, which is read "one and two thirds."

J. $1\frac{1}{3}$

WARNING: This problem has a big idea and extends your understanding!

Definition: Start with one whole and divide it into _____ equal pieces.

We're talking about having one whole plus one more of those pieces.

In total, we have ____ of those ____ pieces when we name the fraction $1\frac{1}{3}$

This fraction also has another name. It is called $\frac{4}{3}$, which is read "four thirds."