Operation: Solve Part 1

Directions: Use the equations below to answer the following questions.

Part 1:

$$2$$
 $3x = 6$
 3
 $10 = -5x$

a. In the equations above, what operation is being used?

b. When *x* is being multiplied by a number, I can ______ the tiles into equal groups to get *x* alone. Draw a picture or use tiles to help you answer the question.

Conclusion: When *x* is being multiplied by a number, I can ______ to solve for *x*. Show your work and **solve the equations #1-3** algebraically. Use your tiles if needed.

Part 2: Predict.

4) $\frac{x}{3} = 6$ 5) $\frac{x}{4} = 8$ 6) $-\frac{x}{5} = 15$

- a. Using your conclusion from Part 1, predict how to solve for *x* when *x* is being **divided** by a number?
- b. Look at the picture (top of page 2) representing $\frac{x}{5} = 2$ or $\frac{1}{5}x = 2$.
- c. $\frac{1}{5}$ *th* of *x* is equal to _____.
- d. But **one whole positive** *x* is equal to ______.
- e. Multiply $\frac{1}{5}x = 2$ by 5 on each side to solve. Show your work.

Conclusion: When *x* is being divided by a number, I can ______ to solve for *x*. Show your work and **solve the equations #4-6** algebraically. Draw a picture if needed.

Part 3:

1) Complete the missing parts of the table and use your tiles and equation mat as you go.

Algebra	Steps to Solve			
2(x+3) = 3(2x+4) + (-2)	1) Distribute			
2x + 6 = 6x + 12 + (-2) 2x + 6 = 6x + 10	2) Simplify			
$2\lambda + 0 = 0\lambda + 10$	3) Bring x 's to one side			
6 = 4x + 10	4) Subtract constant to get <i>x</i> alone			
-4 = 4x	5) Divide by the coefficient of x to get x alone			
-1 = x				

2)			
Algebra	Steps to Solve		
2(x-3) = 3(2x-4) + (-2) 2x-6 = 6x - 12 + (-2) 2x-6 = 6x + (-14) -6 = 4x + (-14)	 1) Distribute 2) Simplify 3) Bring <i>x</i>'s to one side 		
12 = 4x $3 = x$	4) 5)		

a. What do you notice about steps 1, 2, and 3 when solving each of the equations above?

b. List the **first three steps** to look for when solving an equation:

3) Complete the table. **Cross out any unnecessary steps.** *Hint: Use Part 2 if you are not sure.

Algebra	Steps to Solve		
$\frac{1}{4}x = 2$ $(4)\frac{1}{4}x = 2(4)$ $x = 8$	 1) Distribute 2) Simplify 3) Bring <i>x</i>'s to one side 4) add or subtract to bring constant(s) to one side to get <i>x</i> alone 5) 		

c. Now go back to the equations (Part 3, #1-3) in the tables above. Circle **step 4** in each of the tables and fill in the blanks below.

4) _____ OR _____

Now go back and circle **step 5** in each of the equations. Fill in the blanks below.

5)_____OR_____

Conclusions:

a. When solving equations, the steps to take when trying to solve are:

1)		
2)		
3) Bring <i>x</i>		
4) Add OR	to	
5) Multiply OR	to	

b. Why are all of these steps not always needed? Explain.