Burn Baby Burn

Part 1

Directions:

1) Place the candle in the play-doh so that the candle is standing upright.
2) Record the height of the candle excluding the wick. Record this height in your table where time is equal to zero.
3) Wait for your teacher to light the birthday candle and measure its height in centimeters every 30 seconds for 5 minutes.
Exclude the wick when measuring.
4) Record your data in the table and plot your points below.

Part 2

Writing an Equation:

1) Pick two coordinate points that are on your line.
a) Find the slope by drawing a slope triangle on your graph. Slope $=$ \qquad
b) The slope of the line is \qquad because as time passes, the positive or negative
burning candle gets \qquad .
c) My "starting point" or point on the graph where time $(x)=0.0$ minutes is (___,\quad). This point is called the y - \qquad because \qquad
d) Write an equation to represent your function using your slope and y intercept.

$$
y={\underset{\text { slope }}{ }}^{x}+\frac{}{y \text {-intercept }}
$$

2) Making predictions:
a) Extend the trend line on your graph. Predict how long it would take for the candle to burn down completely (height of zero).

I predict, when time $(x)=$ \qquad minutes, my candle height will be $(y)=\underline{0}$.
b) The point on the graph where the height $(y)=0.0$ is (\qquad , \qquad). This point is called the x-intercept because my graph \qquad -.

Part 3
 Domain \& Range:

3) Use your extended trend line on your graph to do the following.
a) Choose a coordinate that has a negative value for $x .\left({ }_{\text {time }(\min)}, \xrightarrow[\text { height }(\mathrm{cm})]{ }\right.$
b) This coordinate point \qquad make sense because \qquad does or does not
c) For x coordinates (time), all values greater than \qquad make sense for the function. So we can say:
x must be \ldots greater than or less than \quad zero.

$$
x_{\substack{\text { or }<}} 0
$$

d) Describe the domain of a function in your own words.
e) For y coordinates (height), all values greater than or equal to \qquad and less than or equal to \qquad make sense for the function. So we can say:
y must be \qquad zero, but
greater than or equal to or less than or equal to greater than or equal to max height or less than or equal to

$$
0_{\geq \text {or } \leq} y{\underset{\geq \text { or } \leq}{ } \varlimsup_{\text {max height }}}
$$

f) Why do the y values (height) have two restrictions, but the x only one?
g) Why do the y values (height) include "or equal to", but the x values do not?
h) Describe the range of a function in your own words.

