Slope-Intercept vs. Standard Form

Part I: Graphing an equation in Slope-Intercept Form:
$y=-2 x+4$
Identify:
slope $=$ \qquad y-intercept $=\left(_, \quad Z_{\text {- }}\right)$

Graph, then identify:
x-intercept $=($ \qquad _(_)

y-axis

Part 2: Graphing an equation in Standard Form: $6 x+3 y=12$

Option 1: $\quad 6 x+3 y=12$
Change into Slope Intercept Form:

$$
\begin{aligned}
& \begin{array}{l}
6 x+3 y=12 \\
\begin{aligned}
-6 x & =-6 x \\
3 y & =-6 x+12
\end{aligned} \\
\begin{array}{ll}
\text { 1) Subtract } 6 \\
\text { sides of th }
\end{array} \\
\frac{3 y}{3}=\frac{-6 x}{3}+\frac{12}{3}
\end{array} \\
& \begin{array}{l}
\text { 2) Divide bo the equat }
\end{array} \\
& y=-2 x+4 \\
& \text { 3) Simplify }
\end{aligned}
$$

$6 x+3 y=12$ and $y=-2 x+4$ are the same \qquad .

Option 2: $\quad 6 x+3 y=12$
Use the x and y intercepts:
To find the x-intercept, plug in $y=$ \qquad .
$6 x+3 y=12$
x-intercept (\qquad , \qquad)

To find the y-intercept, plug in $x=$. $6 x+3 y=12$
y-intercept (_____)
Do the intercepts match the intercepts in the graph above? \qquad

Could we have graphed the line $6 x+3 y=12$ if we only found the intercepts? \qquad How?

