Solution or Not? - Part I

1) a) Plot the points $(0,1),(-1,0),(-5,-4),(1,2)$ and $(3,4)$. Connect the points using a ruler.
b) Name two other ordered pairs that are on the line $($,$) and ($,$) .$
c) I know the two points are solutions because \qquad .
All of the points that you plotted, and the two you wrote down in question b are called solutions.
d) A coordinate that is not a solution
 is: (,). It is not a solution because \qquad .
e) The equation for the line you graphed above is: $y=x+1$. Substitute in the point $(1,2)$ into the equation simplify.

y	$=x+1$
	$=$
	$=$

Because both sides of the equation are equivalent, we know the point $(1,2)$ (circle) is or is not a solution. We can also say the equation is true.
f) Substitute in the coordinate you wrote in d, which is not a solution.

y	$=x+1$
	$=$
	$=$

I know that (,) (coordinate from d) is not a solution (false) because when I substituted the values in, the right and left side were (circle) equivalent or not equivalent making the equation false.

Directions: For the following 2 problems, state if the ordered pair (coordinate) is a solution or not a solution of the given equation. Verify by graphing and explain why it is or is not a solution. Use the same coordinate plane for both problems.
2) $y=2 x-1 ;(3,1)$

The coordinate $(3,1)$ \qquad a
is/is not
solution because it \qquad on the line.
is/is not

3) $y=-x+2 ;(2,0)$

The coordinate $(2,0)$ \qquad a is/is not
solution because it \qquad on the line.
is/is not

Directions: For the following 2 problems, state if the ordered pair (coordinate) is a solution or not a solution of the given equation. Verify by using substitution and explain why it is or is not a solution.
4) $y=-3 x+10 ;(3,1) \quad$ The coordinate $(3,1)$ \qquad (is/is not) a solution because it makes the equation \qquad (truelfalse).
5) $y=x+2 ;(2,0)$

The coordinate $(2,0)$ \qquad (is/is not) a solution because it makes the equation \qquad (true/false).

