Graph and Verify

Let's practice graphing some systems of equations and verifying their solutions.

1) A solution to a system of linear equations is a set of values that makes each equation \qquad (true, false).

For problems two and three, determine whether the given coordinate is or is not a solution to the system of equations. Number two has been started for you. Remember, by definition, both equations have to be true when you substitute the given numbers for the variables.
2) $(3,-1) ;\left\{\begin{array}{l}x-2 y=5 \\
2 x-y=7\end{array}\right.$

$x-2 y=5$
$3-2(-1)=5$

$3+2=5$

$5=5$

The coordinate ($3,-1$) \qquad (is, is not) a solution to the system of equations because it makes the equations
\qquad (true, false).
3) $(1,-4) ;\left\{\begin{array}{l}x-2 y=8 \\ y=4 x-8\end{array}\right.$

The coordinate $(1,-4)$ \qquad (is, is not) a solution to the system of equations because it makes the equations
\qquad (true, false).

For problems four through seven, graph each system of equations and then verify your solution by using substitution.
4)

The solution is
\qquad .

Verify by using substitution.

5)

$$
\left\{\begin{array}{l}
y=2 x-4 \\
y=-\frac{1}{2} x+1
\end{array}\right.
$$

The solution is
\qquad .

6) $\left\{\begin{array}{l}2 x+y=4 \\ 2 x+y=-2\end{array}\right.$

The solution is
\qquad .
7) $\left\{\begin{array}{l}y=-3 x+2 \\ 3 x+y=2\end{array}\right.$

The solution is
\qquad .

Verify by using substitution.
\qquad

Conclusion: Go back and look at problems four through seven. Three different types of solutions resulted for a system of equations; we learned about two yesterday. Sketch of each of the possible solutions, as described.
One
Solution

