Patterns in Linear Systems

Review - Fill in the blanks to each of the sentence frames.

1) A solution to a system of linear equations is a set of values that makes each equation \qquad (true, false).
2) For a system of two linear equations whose graphs are intersecting lines, there is/are \qquad (one, none, infinitely many) solutions.
3) We have learned that there are three different types of solutions that can result for a system of two linear equations. Sketch of each of the possible solutions, as described.

No
Solution
 Infinitely Many Solutions

For problems four through nine, graph each system of equations and then verify your solution by using substitution.
4) $\left\{\begin{array}{l}y=-2 x+6 \\ y=2 x+2\end{array}\right.$

The solution is \qquad .

5)

$$
\left\{\begin{array}{l}
y=6 x-5 \\
12 x-2 y=-2
\end{array}\right.
$$

The solution is \qquad .

6)

$$
\left\{\begin{array}{l}
y=x-1 \\
y=-\frac{1}{2} x+2
\end{array}\right.
$$

The solution is \qquad .

7) $\left\{\begin{array}{l}y=-3 x+2 \\ 3 x+y=2\end{array}\right.$

The solution is: \qquad .

8) $\left\{\begin{array}{l}y=\frac{-1}{3} x-1 \\ -2 x-6 y=6\end{array}\right.$

The solution is \qquad .

9) $\left\{\begin{array}{l}y=2 x-1 \\ y=2 x+2\end{array}\right.$

The solution is: \qquad .

Complete the table below based upon your results from problems 4-9. Use the able to answer the questions below. Number 4 has been filled in for you.

\#	Type of Solution (one, none, infinitely many)	Equations in slope-intercept form	Slope for each equation	Y-intercept for each equation
$\mathbf{4}$	one solution	$y=-2 x+6$ $y=2 x+2$	$m=-2 ; m=2$	$b=6 ; b=2$
5				
$\mathbf{6}$				
7				
$\mathbf{8}$				
$\mathbf{9}$				

1) Looking at each of the problems that had one solution, what do you notice about the slopes and y-intercepts of their equations?

The slopes are \qquad but the y-intercepts may be the \qquad or
\qquad .
2) Looking at each of the problems that had no solution, what do you notice about the slopes and y-intercepts of their equations?
3) Looking at each of the problems that had infinitely many solutions, what do you notice about the slopes and y-intercepts of their equations?

