The Eliminator!

Using what your learned in the Sewer Gator activity, solve the following systems of equations by the elimination method.

1) $\left\{\begin{array}{l}2 x-y=7 \\ x+y=2\end{array}\right.$
$1^{\text {st. }}$
1. Can I add or subtract the two equations to eliminate a variable?

new equation

$2^{\text {nd }}$
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.

The point of intersection (solution) is \qquad .
2) $\left\{\begin{array}{l}3 x+2 y=5 \\ 3 x+y=1\end{array}\right.$
$1^{\text {st. }}$

1. Can I add or subtract the two equations to eliminate a variable?
new equation
$2^{\text {nd }}$:
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

$4^{\text {th: }}:$	$3 x+2 y=5$

4. Verify your solution by substituting the values in to both equations.

The point of intersection (solution) is \qquad .

Practice solving the following systems of equations by following the five steps of elimination on the prior page:
3) $\left\{\begin{array}{l}3 x+2 y=5 \\ x-2 y=1\end{array}\right.$
4) $\left\{\begin{array}{l}-5 x+3 y=5 \\ 5 x-2 y=1\end{array}\right.$

The solution is \qquad .

The solution is \qquad .
5) $\left\{\begin{array}{l}3 x+2 y=5 \\ x+2 y=1\end{array}\right.$
6) $\left\{\begin{array}{l}x+y=-5 \\ x-2 y=1\end{array}\right.$

The solution is \qquad .

The solution is \qquad
Conclusion: When using the elimination method, if the \qquad of one of the variables are \qquad of each other I \qquad (add/subtract) them to eliminate a variable OR if the \qquad of one set of variables are the same I \qquad (add/subtract) to eliminate one of the variables.

