The Elminator II

Solving the system of linear equations by using the elimination method.

1) $\begin{aligned} & x+y=5 \\ & 2 x-y=4\end{aligned}$
$1^{\text {st: }}$
1. Can I add or subtract the two equations to eliminate a variable?
$2^{\text {nd }}$:
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.

The point of intersection (solution) is \qquad .
2) $\begin{aligned} & 3 x+2 y=5 \\ & 3 x+y=1\end{aligned}$
$1^{\text {st, }}$

1. Can I add or subtract the two equations to eliminate a variable?
new equation
$2^{\text {nd }}$
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.
$4^{\text {th }}: \quad 3 x+2 y=5 \mid 3 x+y=1$
4. Verify your solution by substituting the values in to both equations.

The point of intersection (solution) is \qquad .

- In problem 1 the two equations were \qquad (added/subtracted) in order to eliminate the \qquad (x / y) variable.
- In problem 2 the two equations were \qquad (added/subtracted) in order to eliminate the \qquad (x / y) variable.

3) | $3 x+2 y=6$ |
| :--- |
| $x-y=2$ |\quad| 1. Can I add or subtract the two |
| :--- |
| equations to eliminate a variable? |

$1^{\text {st: }}$ *Why, when the equations are added or subtracted, a variable is not eliminated? The variables are not eliminated because the \qquad of the variables are not the same (for elimination by subtraction) or opposites of each other (for elimination by addition).
*The $\ldots \quad(x / y)$ variable could be eliminated if the coefficient of the (x / y) variable of the second equation was changed from \qquad to
\qquad \ldots
\(\left.$$
\begin{array}{lll}\begin{array}{l}\text { Start with the } \\
\text { given system. } \\
3 x+2 y=6\end{array} & \begin{array}{l}\text { Prepare to eliminate } y \text { by multiplying } \\
\text { the } 2^{\text {nd }} \text { equation by } 2 .\end{array} & \begin{array}{l}\text { Write the equations; } \\
\text { add to eliminate } y .\end{array}
$$

3 x+2 y=6 \Rightarrow \& 3 x+2 y=6\end{array}\right]\)| | |
| :--- | :--- |
| $x-y=2$ | $2(x-y=2) \Rightarrow$ |

$$
5 x=10
$$

$2^{\text {nd }}: 5 x=10$

$$
x=2
$$

2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.
4) $\begin{aligned} & 2 x+6 y=6 \\ & x+y=1\end{aligned}$
1. Can I add or subtract the two equations to eliminate a variable?
$1^{\text {st: }}$:Why, when the equations are added or subtracted, a variable is not eliminated? The variables are not eliminated because the \qquad the variables are not the same (for elimination by subtraction) or opposites of each other (for elimination by addition).
*The
\qquad (x / y) variable of the second equation was changed from \qquad to
\qquad .

Start with the Prepare to eliminate ___ by multiplying Write the equations; given system. the ____($\left.1^{\text {st } /} / 2^{\text {nd }}\right)$ equation by \qquad . \qquad
$2 x+6 y=6$
$x+y=1$
$2^{\text {nd }}$:
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.

Solve each of the following systems of equations by the elimination method. Verify your solution.
5) $\begin{aligned} & x+y=6 \\ & 3 x+y=4\end{aligned}$

Q: Can I add or subtract the two equations to eliminate a variable or do I need to multiply one of the equations first?

A: \qquad .
6) $\begin{aligned} & 2 x+y=3 \\ & 3 x-2 y=8\end{aligned}$

Q: Can I add or subtract the two equations to eliminate a variable or do I need to multiply one of the equations first?

A: \qquad .

