The Elminator II

Solving the system of linear equations by using the *elimination* method.

$$1) \frac{x+y=5}{2x-y=4}$$

 1^{st} :

1. Can I add or subtract the two equations to eliminate a variable?

new equation

 2^{nd} :

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4th:
$$x + y = 5$$
 $2x - y = 4$

4. Verify your solution by substituting the values in to *both* equations.

The point of intersection (*solution*) is ______.

$$3x + 2y = 5$$
$$3x + y = 1$$

 1^{st} :

1. Can I add or subtract the two equations to eliminate a variable?

new equation

 2^{nd} :

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

$$4^{\text{th}}: 3x + 2y = 5 \quad 3x + y = 1$$

4. Verify your solution by substituting the values in to *both* equations.

The point of intersection (*solution*) is _____.

- In problem 1 the two equations were _____ (added/subtracted) in order to eliminate the _____ (x/y) variable.
- In problem 2 the two equations were _____ (added/subtracted) in order to eliminate the _____ (x/y) variable.

$$3) \frac{3x + 2y = 6}{x - y = 2}$$

1. Can I add or subtract the two equations to eliminate a variable?

1st: *Why, when the equations are added or subtracted, a variable is *not eliminated*? The variables are *not* eliminated because the ______ of the variables are *not* the same (for elimination by subtraction) or opposites of each other (for elimination by addition).

*The _____(x/y) variable could be eliminated if the coefficient of the _____ to

Start with the given system. 3x + 2y = 6

Prepare to *eliminate* y by multiplying the 2^{nd} equation by 2.

Write the equations; add to *eliminate*
$$y$$
. $3x + 2y = 6$

$$x - y = 2$$

$$3x + 2y = 6 \implies 2(x - y = 2) \implies$$

$$2x - 2y = 4$$

$$5x = 10$$

$$2^{\text{nd}}$$
: $5x = 10$
 $x = 2$

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

$$4^{\text{th}}$$
: $3x + 2y = 6$ $x - y = 2$

4. Verify your solution by substituting the values in to *both* equations.

$$4) \begin{array}{c} 2x + 6y = 6 \\ x + y = 1 \end{array}$$

1. Can I add or subtract the two equations to eliminate a variable?

1st: *Why, when the equations are added or subtracted, a variable is not eliminated? The variables are not eliminated because the the variables are *not* the same (for elimination by subtraction) or opposites of each other (for elimination by addition).

*The $\underline{\hspace{1cm}}(x/y)$ variable could be eliminated if the coefficient of the (x/y) variable of the second equation was changed from $_{}$ to

Start with the given system. 2x + 6y = 6

Prepare to *eliminate* ____ by multiplying Write the equations; the $\underline{\hspace{1cm}}$ (1st/2nd) equation by $\underline{\hspace{1cm}}$.

 $\underline{\hspace{1cm}}$ (+/-) to eliminate $\underline{\hspace{1cm}}$.

x + y = 1

2nd.

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

2x + 6y = 6 | x + y = 2

4. Verify your solution by substituting the values in to *both* equations.

Solve each of the following systems of equations by the *elimination method*. Verify your *solution*.

 $5) \frac{x+y=6}{3x+y=4}$

Q: Can I add or subtract the two equations to eliminate a variable or do I need to multiply one of the equations first?

A: ______.

 $6) \ \frac{2x + y = 3}{3x - 2y = 8}$

Q: Can I add or subtract the two equations to eliminate a variable or do I need to multiply one of the equations first?

A: ______.