The Elminator III

Solving the system of linear equations by using the *elimination* method.

$$4x + 5y = -$$

$$2x - y = 3$$

1. Can I add or subtract the two equations to eliminate a variable?

1st: *Why, when the equations are added or subtracted, a variable is *not eliminated*? The variables are *not* eliminated because the ______ of the variables are *not* the same (for elimination by subtraction) or opposites of each other (for elimination by addition).

*The $\underline{\hspace{1cm}}(x/y)$ variable could be eliminated if the coefficient of the $\underline{\hspace{1cm}}(x/y)$ variable of the second equation was changed from $\underline{\hspace{1cm}}$ to

Start with the
given system.
4x + 5y = -1

Prepare to *eliminate* y by multiplying the 2^{nd} equation by 2.

Write the equations; add to *eliminate y*.

$$4x + 3y = -1$$
$$2x - y = 3$$

$$4x + 5y = -1 \implies 5(2x - y = 3) \implies$$

2nd.

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4th:
$$4x + 5y = -1$$
 $2x - y = 3$

4. Verify your solution by substituting the values in to *both* equations.

2)	2x + 3y = 5
	2x + 3y = 3 $3x - 2y = 1$

- 1. a) Can I add or subtract the two equations to eliminate a variable? -(If yes, stop here and solve!)
- b) Can I multiply one equation by a constant to eliminate one of the _____ (If yes, stop here and solve by multiplying the top or bottom equation and solve.)
- c) Can I multiply the top equation by a constant, and the bottom equation by a different constant to obtain coefficients of one variable that are the same (to use with subtraction) OR opposites of each other (to use with addition) to eliminate a variable?

I would multiply the top equation by _ ____ and the bottom equation by _____ so that the coefficients of the ____ (x/y) variable become _____ (the same/opposites) and can be eliminated.

Start with the given system.

Prepare to *eliminate* ____ by multiplying the top equation by and the bottom equation by _____.

Write the new equations; $\underline{\hspace{1cm}}(+/-)$ to eliminate ____.

$$2x + 3y = 5 \implies 2(2x + 3y = 5)$$
$$3x - 2y = 1 \implies 3(3x - 2y = 1)$$

$$2(2x + 3y = 5)$$

$$3x - 2y = 1$$

$$3(3x-2y=1)$$

2nd.

2. Solve for the remaining variable.

3rd:

3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

$$4^{th}: 2x + 3y = 5 3x - 2y = 1$$

4. Verify your solution by substituting the values in to *both* equations.

Solve each of the following systems by the <i>elimination method</i> . Verify your <i>solution</i> . Ask yourself the following questions for each of the problems below, to help you solve. You do not need to record your answers. a) Can I add or subtract the two equations to eliminate a variable? (If yes, stop here and solve!)
b) Can I multiply one equation by a constant to eliminate one of the variables? (If yes, stop here and solve by multiplying the top or bottom equation and solve.)
c) Can I multiply the top equation by a constant, and the bottom equation by a different constant to obtain coefficients of one variable that are the same (to use with subtraction) OR opposites of each other (to use with addition) to eliminate a variable? I would multiply the top equation by and the bottom equation by so that the coefficients of the (x/y) variable become (the same/opposites) and can be eliminated.

3)
$$x - y = 2 \\ 2x + 2y = 4$$

4)
$$5x - 6y = -32$$
$$3x + 6y = 48$$

$$5) \frac{3x - 10y = -25}{4x + 40y = 20}$$

$$6) \begin{array}{l} 3x + 2y = -9 \\ -10x + 5y = -5 \end{array}$$