The Elminator III

Solving the system of linear equations by using the elimination method.

1) $\begin{aligned} & 4 x+5 y=-1 \\ & 2 x-y=3\end{aligned}$
1. Can I add or subtract the two equations to eliminate a variable?
$1^{\text {st: }}$ *Why, when the equations are added or subtracted, a variable is not eliminated? The variables are not eliminated because the \qquad of the variables are not the same (for elimination by subtraction) or opposites of each other (for elimination by addition).
*The \qquad (x / y) variable could be eliminated if the coefficient of the (x / y) variable of the second equation was changed from \qquad to
\qquad -

Start with the given system.
$4 x+5 y=-1$
$2 x-y=3$

Prepare to eliminate y by multiplying the $2^{\text {nd }}$ equation by 2 .

$$
\begin{aligned}
& 4 x+5 y=-1 \Rightarrow \\
& 5(2 x-y=3) \Rightarrow
\end{aligned}
$$

Write the equations; add to eliminate y.
$2^{\text {nd: }}$
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.

2) $\begin{aligned} & 2 x+3 y=5 \\ & 3 x-2 y=1 \end{aligned}$	1. a) Can I add or subtract the two equations to eliminate a variable? - \qquad (If yes, stop here and solve!) b) Can I multiply one equation by a constant to eliminate one of the variables? \qquad (If yes, stop here and solve by multiplying the top or bottom equation and solve.) c) Can I multiply the top equation by a constant, and the bottom equation by a different constant to obtain coefficients of one variable that are the same (to use with subtraction) OR opposites of each other (to use with addition) to eliminate a variable? I would multiply the top equation by \qquad and the bottom equation by \qquad so that the coefficients of the \qquad (x / y) variable become \qquad (the same/opposites) and can be eliminated.
Start with the given system.	Prepare to eliminate \qquad by multiplying Write the new the top equation by equations; \qquad (+/-) to equation by \qquad . eliminate \qquad
$2 x+3 y=5 \quad \Rightarrow$	$2(2 x+3 y=5) \quad \Rightarrow$
$3 x-2 y=1 \quad \Rightarrow$	$3(3 x-2 y=1) \quad \Rightarrow$

$2^{\text {nd }}$
2. Solve for the remaining variable.
$3^{\text {rd }}$:
3. Solve for the eliminated variable by substituting the known variable value into either of the original equations.

4. Verify your solution by substituting the values in to both equations.

Solve each of the following systems by the elimination method. Verify your solution. Ask yourself the following questions for each of the problems below, to help you solve. You do not need to record your answers.
a) Can I add or subtract the two equations to eliminate a variable? \qquad (If yes, stop here and solve!)
b) Can I multiply one equation by a constant to eliminate one of the variables? __ (If yes, stop here and solve by multiplying the top or bottom equation and solve.)
c) Can I multiply the top equation by a constant, and the bottom equation by a different constant to obtain coefficients of one variable that are the same (to use with subtraction) OR opposites of each other (to use with addition) to eliminate a variable?

I would multiply the top equation by \qquad and the bottom equation by
\qquad so that the coefficients of the (x / y) variable become \qquad (the same/opposites) and can be eliminated.
3) $\begin{aligned} & x-y=2 \\ & 2 x+2 y=4\end{aligned}$
4) $\begin{aligned} & 5 x-6 y=-32 \\ & 3 x+6 y=48\end{aligned}$
5) $\begin{aligned} & 3 x-10 y=-25 \\ & 4 x+40 y=20\end{aligned}$
6) $\begin{aligned} & 3 x+2 y=-9 \\ & -10 x+5 y=-5\end{aligned}$

