Multiplying Monomials

Multiplying Powers - Review: Expand and simplify
problems 1-3 as shown in the example. Then answer questions 4-5. (This is a review of what you discovered in Day 5.)

Example: $\left(x^{4}\right)\left(x^{4}\right)=(x \bullet x \bullet x \bullet x)(x \bullet x \bullet x \bullet x)=x^{8}$

1) $\left(b^{3}\right)\left(b^{4}\right)=$
2) $\left(y^{3}\right)\left(y^{2}\right)=$
3) When I multiply two powers together of the same base, the \qquad stays the same and I \qquad the exponents.
4) $\left(y^{4}\right)\left(z^{2}\right)$ cannot be simplified because
5) Explain why $3^{2}+3^{3} \neq 3^{5}$.

Multiplying a Monomial by a Monomial: Expand and simplify problems 6-9 as shown by the given example. Then answer questions 10-12.

Example: $\left(x^{3} y^{2}\right)\left(x^{4} y\right)=(x \bullet x \bullet x \bullet y \bullet y)(x \bullet x \bullet x \bullet x \bullet y)=x^{7} y^{3}$
6) $\left(a b^{3} c^{2}\right)\left(a^{2} b^{4} c^{3}\right)=$
7) $\left(y^{3}\right)\left(y^{2} z^{4}\right)=$
8) $\left(a^{-7} b\right)\left(a^{2} b^{2}\right)=$
9) $\left(2 n^{2}\right)(4 n)=$
10) Does the rule of "when I multiply two monomials together, I add the exponents" apply to questions $6-9$ as well? Why or why not? (For example, does $\left(x^{8} y^{8}\right)\left(x^{5} y^{5}\right)=x^{8+5} y^{8+5}=x^{13} y^{13}$?)
11) How would you rewrite \#8 so that it does not have a negative exponent? (Look back at your tables that you made on Day 3 - Exploring Negative Exponents to help you.)
12) Using what you reviewed in \#11, rewrite the following without a negative exponent:
a) $6^{-3}=$
b) $\frac{1}{x^{-2}}=$
c) $a^{5} b^{-2}=$
d) $\frac{x^{4}}{y^{-6}}=$

Practice Time

13) $\left(3 x^{-4} y^{3}\right)\left(x^{2} y^{2}\right)=$
14) $\left(y^{2} z^{3}\right)\left(y^{2} z^{4}\right)\left(y z^{2}\right)=$
15) $\left(-2 \mathrm{c}^{2} \mathrm{~d}^{3}\right)\left(-2 \mathrm{c}^{3} \mathrm{~d}\right)=$
16) Rewrite \#13 without a negative exponent.
