BALL BOUNCE I

Ball Description:
This ball rebounds to a height of \qquad inches when dropped from 24 inches.

The rebound ratio for this ball is: \qquad (simplify if possible)

Predict the rebound height when the ball is dropped from \qquad inches.

Predict what drop height would be necessary to have a rebound of \qquad inches.

BALL BOUNCE II

Ball Description:
This ball rebounds to a height of \qquad inches when dropped from 20 inches.

The rebound ratio for this ball is: \qquad (simplify if possible)

Return your meter stick and ball to your teacher and ask for numbers to complete the following questions.

Use a proportion with a variable to predict the rebound height when the ball is dropped from \qquad inches.

Use a proportion with a variable to predict what drop height is needed to have a rebound of \qquad .

RATES ON A DOUBLE-SIDED NUMBERLINE

A Rate is a ratio between two measurements.

RATES EXPERIMENT \#1:

\qquad walks \qquad in \qquad
DIRECTIONS: Fill in this information on the double-sided number line below and follow directions to use it to answer the question your teacher will ask.

Question from the teacher:

Proportion:

Answer to the question in a sentence:

RATES ON A DOUBLE-SIDED NUMBERLINE II

A Rate is a ratio between two measurements.

RATES EXPERIMENT \#2:

\qquad claps \qquad times in \qquad

DIRECTIONS: Fill in this information on the double-sided number line below and follow directions to use it to answer the question your teacher will ask.

Question from the teacher:

Proportion:

Answer to the question in a sentence:

RATES EXPERIMENT \#3:

\qquad can \qquad in

DIRECTIONS: Fill in this information on the double-sided number line below and follow directions to use it to answer the question your teacher will ask.

0

0

Question from the teacher:

Proportion:

Answer to the question in a sentence:

Use a double-sided number line and a proportion to solve each of the questions below.

1. Maribel earns $\$ 34$ in 4 hours of work. How long will it take her to earn $\$ 85$?
2. The factory can make 60 bicycles in 8 hours. How many can it make 20 hours?
